
Chapter 14

LANDAU DAMPING

As we have seen in previous chapters, collective instabilities occur in bunched and

unbunched beam as a result of the interaction of the beam particles with their own wake

fields. There are various way to damp these instabilities. Aside from mechanical dampers,

there is a natural stabilization mechanism against collective instabilities when the beam

particles have a small spread in their frequencies, such as betatron frequency, synchrotron

frequency, or revolution frequency as the situation requires. This damping mechanism is

called Landau damping, which was first formulated by Landau [1]. However, that paper is

rather difficult to understand. Later, Jackson [2] wrote an article on longitudinal plasma

oscillations and had the concept well explained.

Neil and Sessler [3] first formulated the theory of Landau damping on longitudinal

instabilities, while Laslett, Neil and Sessler [4] first applied the theory to transverse in-

stabilities. There have been quite a number of good papers written on this subject by

Hereward [5], Hofmann [6], and Chao [7].

We encountered Landau damping in Chapter 5 when we formulated the dispersion

relation using the Vlasov equation. There, we came across the ambiguity of a singularity

in the denominator which is critical in determining whether the system will be stable or

unstable. That ambiguity can only be avoided when the problem is treated as an initial-

value problem. This will be covered in this chapter. We first study the beam response of

an harmonic driving force, the beam response of shock or δ-pulse excitation, and finally

try to understand the physics of Landau damping.
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14.1 HARMONIC BEAM RESPONSE

A particle having a natural angular frequency ω is driven by a force of angular

frequency Ω. The equation describing its displacement x(t) is

ẍ+ ω2x = A cos Ωt , (14.1)

where A denotes the amplitude of the force or its effect on acceleration. The most general

solution is

x(t) = x0 cosωt+ ẋ0
sinωt

ω
+

A

ω2 − Ω2

[
cos Ωt− cosωt

]
, (14.2)

where x0 and ẋ0 are, respectively the initial value of x and ẋ at t = 0. The first two terms

are due to a shock of δ-pulse excitation. Although they are important, we shall postpone

the discussion to the next section.

Let us pay attention to the excitation by the harmonic force. Notice that the response

is well-behaved even at ω = Ω. For a large number of particles having a distribution ρ(ω)

in frequency and normalized to unity, the displacement of the center of mass is

〈x(t)〉 =

∫ ∞
−∞

dω
ρ(ω)

ω2 − Ω2

[
cos Ωt− cosωt

]
. (14.3)

As is the case in particle beams, the distribution is mostly a narrow one centered at

angular frequency ωx. For simplicity, let us assume that this distribution does not peak

at any other frequency, even the negative frequencies. In order to drive this system of

particles, the driving frequency must also be close to this center frequency, or Ω ≈ ωx. We

can therefore do the expansion ω = Ω + (ω−Ω), and the Eq. (14.3) can be approximated

by

〈x(t)〉 =
A

2ωx

[
cos Ωt

∫ ∞
−∞

dωρ(ω)
1− cos(ω − Ω)t

ω − Ω
+ sin Ωt

∫ ∞
−∞

dωρ(ω)
sin(ω − Ω)t

ω − Ω

]
.

(14.4)

Notice that we have separated the fast-oscillating term of angular frequency Ω and the

slow-oscillating envelope-like terms with angular frequency ω−Ω. Also we see a part, the

cos Ωt term, that is not driven in phase∗ by the force, and the other part, the sin Ωt term,

that is driven in phase by the force. More discussion will follow later. The functions

p(ω) =
1− cosωt

ω
and d(ω) =

sinωt

ω
(14.5)
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Figure 14.1: Plots of the functions p(ω) and d(ω) with t being a parameter. As
t→∞, p(ω)→ ℘ω−1 and d(ω)→ πδ(ω), where ℘ denotes principal value.

are illustrated in Fig. 14.1. The function p(ω) always vanishes at ω = 0 and decays as

ω−1 when ω → ±∞. It has peaks of value ±at at ±b/t, where b = 2.3311 is the root of

b = tan(b/2) and a = 2b/(1 + b2) = 0.7246. These peaks grow linearly with t and move

closer to ω = 0 as t increases. We therefore have

lim
t→∞

p(ω) = ℘
1

ω
, (14.6)

where ℘ stands for the principal value. On the other hand, d(ω) has a peak of value t at

ω = 0 and rolls off as ω−1 for large ω, having the first zeroes at ω = ±π/t. As t → ∞,

the peak at ω = 0 grows linearly while its width also shrinks inversely with t; the area

enclosed is always π. Outside the peak, the function oscillates very fast. We therefore

have

lim
t→∞

d(ω) = πδ(ω) . (14.7)

Coming back to Eq. (14.4), as t � 1/∆ω, where ∆ω is a measure of the width of the

frequency distribution ρ(ω), all the transients die, leaving us with

〈x(t)〉 =
A

2ωx

[
cos Ωt ℘

∫ ∞
−∞

dω
ρ(ω)

ω − Ω
+ iπρ(Ω) sin Ωt

]
. (14.8)

∗Actually, “in phase” here implies the driving phase is in phase with the velocity ẋ.
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Now let us repeat the derivation with the force A sin Ωt and combine the solution

with the former to get the long-term response to the force Ae−iΩt:

〈x(t)〉 =
Ae−iΩt

2ωx

[
℘

∫ ∞
−∞

dω
ρ(ω)

ω −Ω
+ iπρ(Ω)

]
=
Ae−iΩt

2ωx∆ω
R(u) , (14.9)

where the beam transfer function (BTF) is defined as

R(u) = f(u) + ig(u) , (14.10)

with

u =
ωx −Ω

∆ω
, (14.11)

and

f(u) = ∆ω ℘

∫ ∞
−∞

dω
ρ(ω)

ω −Ω
and g(u) = π∆ωρ(ωx−u∆ω) , (14.12)

where again ∆ω is a measure of the width of the frequency distribution. The BTF is an

important function, because it can be measured and it gives valuable information to the

distribution function ρ(ω) and, as will be demonstrated below, also the impedance of the

vacuum chamber. We can also combine the two expressions in Eq. (14.12) into one and

obtain

R(u) = f(u) + ig(u) = ∆ω

∫ ∞
−∞

dω
ρ(ω)

ω − Ω− iε with u =
ωx − Ω

∆ω
. (14.13)

There can be singularity in R(u) when Ω = ω − iε or u∆ω = ωx − ω + iε. This implies

that R(u) is an analytic function with singularities only in the upper u-plane. Notice that

instead of the derivation from the initial condition, the displacement of the center of the

bunch, Eq. (14.9), can also be obtained directly by writing the force as

Ae−i(Ω+iε)t = Ae−iΩteεt , (14.14)

where ε is an infinitesimal positive number, so that the solution becomes

〈x(t)〉 =
Ae−iΩt

2ωx

∫ ∞
−∞

dω
ρ(ω)

ω − Ω− iε =
Ae−iΩt

2ωx

[
℘

∫ ∞
−∞

dω
ρ(ω)

ω − Ω
+ iπρ(Ω)

]
, (14.15)

which is exactly the same as Eq. (14.9). The addition of the small ε implies that the force

in Eq. (14.14) is zero at t = −∞ and increases adiabatically.
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14.2 SHOCK RESPONSE

The beam is suddenly excited by a shock or a δ-pulse, imparting to the beam particles

either a displacement x0 or a velocity displacement ẋ0, but not both. From Eq. (14.2),

we have the shock response defined by either

G(t) =
〈x(t)〉
x0

= H(t)

∫ ∞
−∞

dω ρ(ω) cosωt , (14.16)

or

G(t) =
〈ẋ(t)〉
ẋ0

= H(t)

∫ ∞
−∞

dω ρ(ω) cosωt . (14.17)

Thus the shock response function (SRF) is always real and vanishes when t < 0. The

SRF is important because it is an easily measured function and it can give information

about the distribution function of the frequency as well as the BTF.

It is interesting to show that there is a relation between the the SRF and the BTF.

The Fourier transform of the SRF is

G̃(ω) =
1

2π

∫ ∞
0

dtG(t)eiωt . (14.18)

where attention has to be paid that the integral starts from zero. The real part is

Re G̃(ω) =
1

2π

∫ ∞
0

dtG(t) cosωt

=
1

2π

∫ ∞
0

dt cosωt

∫ ∞
−∞

dω′ ρ(ω′) cosω′t

=
1

4π

∫ ∞
−∞

dω′ρ(ω′)

∫ ∞
−∞

dt cosωt cosω′t

=
1

4

∫ ∞
−∞

dω′ρ(ω′)

[
δ(ω′ − ω) + δ(ω′ + ω)

]
=

1

4
ρ(ω) , (14.19)

where δ(ω′+ω) has no contribution because the distribution is narrow and is centered at
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only one positive frequency. The imaginary part is

ImG̃(ω) =
1

2π

∫ ∞
0

dtG(t) sinωt

=
1

2π

∫ ∞
0

dt sinωt

∫ ∞
−∞

dω′ ρ(ω′) cosω′t

=
1

4π

∫ ∞
−∞

dω′ρ(ω′)

∫ ∞
0

dt

[
sin(ω − ω′)t+ sin(ω + ω′)t

]
=

1

4π

[
℘

∫ ∞
−∞

dω′
ρ(ω′)

ω − ω′ + ℘

∫ ∞
−∞

dω′
ρ(ω′)

ω + ω′

]
(14.20)

where again the last principal value integral involving ω + ω′ can be neglected because

of the narrow spread of the distribution ρ. We write these integrals as principal value

integrals because during the derivation, one integrand vanishes when ω′ − ω = 0 and the

other vanishes when ω + ω′ = 0. Combining the result,

G̃(ω) =
−i
4π

[
℘

∫ ∞
−∞

dω′
ρ(ω′)

ω′ − ω + iπρ(ω)

]
=

−i
4π∆ω

[
f(u) + ig(u)

]
=
−i

4π∆ω
R(u) . (14.21)

In other words, the Fourier transform of the SRF is equal to the BTF multiplied by

−i/(4π∆ω). This also provides us with a way to compute the BTF. The procedure is:

compute the SRF G(t), find its Fourier transform G̃(ω), and then infer the BTF R(u).

As an example, take the Lorentz distribution

ρ(ω) =
∆ω

π

1

(ω − ωx)2 + (∆ω)2
. (14.22)

The SRF is

G(t) = H(t)Re
∫ ∞
−∞

dω
∆ω

π

eiωt

(ω − ωx)2 + (∆ω)2

= H(t)Re ei(ωx+i∆ω)t = H(t)e−∆ωt cosωxt . (14.23)
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Next the Fourier transform,

G̃(ω) =
1

2π

∫ ∞
0

dt cosωxt e
(−∆ω+iω)t

=
1

4π

∫ ∞
0

dt
[
ei(ωx+i∆ω+ω)t + ei(−ωx+i∆ω+ω)t

]
=

1

4π

[
1

−i(ωx + ω + i∆ω)
+

1

i(ωx − ω − i∆ω)

]
=

−i
4π∆ω

1

u− i =
−i

4π∆ω

u+ i

u2 + 1
, (14.24)

where again the smaller term involving ωr + ω has been removed. Thus the BTF is

R(u) = f(u) + ig(u) =
u+ i

u2 + 1
. (14.25)

which is equal to the Fourier transform of the SRF G(t) multiplied by −i/(4π∆ω). These

results are depicted in Fig. 14.2. As expected the shock excitation is the decay of the

center displacement 〈x〉 or the center velocity displacement 〈ẋ〉. The decay comes from

the distribution ρ(ω) so that each particle oscillates with a slightly different frequency.

The particles will spread out and therefore the decay of the center displacement or the

center velocity displacement. This is usually known as decoherence or filamentation. For

the Lorentz distribution, the decay turns out to be exponential. However, it is important

to point out that the center 〈ẋ〉 decays because initially we have a nonzero x0 but ẋ0 = 0.

In case ẋ0 6= 0, the Lorentz distribution does not gives a decay of the center displacement,

(Exercise 14.1).

Table 13.4 lists the BTF and SRF for some commonly used frequency distributions

(Exercise 14.2).

Because the BTF is the Fourier transform of SRF, G(t) is also the inverse Fourier

transform of R(u):

G(t) = Re −i
4π∆ω

∫ ∞
−∞

dω R

(
ωx − ω

∆ω

)
e−iωt . (14.26)

The Re should not be there. It is there because we have consistently neglected the

frequencies around −ωx.

14.3 LANDAU DAMPING

After understanding the BTF and the SRF, let us come back to the transient response
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Figure 14.2: For Lorentz frequency distribution, plots showing beam transfer func-
tion R(u) = f(u) + ig(u) (top) and shock response function G(t) (bottom).
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Figure 14.1: Shock excitation function G(t) and beam transfer function R(u) = f(u) + ig(u) for various frequency
distributions ρ(ω) with v = (ωx − ω)/∆ω.

Frequency Distribution Shock Response Beam response function

Type Distribution G(t) f(u) g(u)

Lorentz
1

π∆ω

1

v2 + 1
e−∆ω t cosωxt

u

u2 + 1

1

u2 + 1

rectangular
1

2∆ω
H(1− |v|) 1

2
ln
∣∣∣∣u+ 1

u− 1

∣∣∣∣ π

2
H(1− |u|)

parabolic
3

4∆ω
(1− v2)H(1− |v|) 3

4

[
(1− u2) ln

∣∣∣∣u+ 1

u− 1

∣∣∣∣+ 2u
]

3π

4
(1− u2)H(1− |v|)

elliptical
2

π∆ω

√
1− v2H(1− |v|) 2

[
u− sgn(u)

√
1− u2H(1− |u|)

]
2
√

1− u2H(1− |u|)

bi-Lorentz
2

π∆ω

1

(v2 + 1)2

u(u2 + 3)

(u2 + 1)2

2

(u2 + 1)2

Gaussian
1√

2π∆ω
e−v

2/2 e−(∆ω t)2/2 cosωxt

√
2

π
e−u

2/2
∫ ∞

0

dy

y
e−y

2/2 sinh uy

√
π

2
e−u

2/2



14-10 CHAPTER 14. LANDAU DAMPING

Figure 14.3: Solid: the response of a particle having exactly the same frequency Ω
as the driving force grows linearly in time. Dashes: the response of a particle having
frequency 95% of Ω gives up its energy after about 10 oscillations.

of a harmonic excitation; i.e., Eq. (14.4). The term proportional to sin Ωt is driven in

phase by the harmonic force, and the particle should be absorbing energy. Consider a

component corresponding to the frequency ω, its envelope is, according to Eq. (14.3),

Amplitude(ω) =
A

ωx

sin(ω − Ω)t/2

ω − Ω
. (14.27)

This means that all particles that have frequency ω are excited at t = 0 increase to a

maximum of A/[ωx(ω−Ω)] at t ≈ π/(ω−Ω) and die down to zero again at t = 2π/(ω−Ω).

Thus energy is gained but is given back to the system. For ω closer to Ω, the response

amplitude rises to a larger amplitude and the energy is given back to the system at

a later time. For those particles that have exactly frequency Ω, the amplitude grows

linearly with time and the energy keeps on growing. This is called Landau damping. An

illustration is shown in Fig. 14.3, where the solid curve shows a particle having exactly

the same frequency as Ω and growing linearly, while the dashed curve shows a particle

with frequency 95% of Ω, decaying after about 10 oscillations. In other words, particles

with ω far away from Ω get excited, but the energy is returned to those particles having ω

close to Ω, which are still absorbing energy. As time increases, particles with frequencies

closer to Ω give up their energies to particles with frequencies much closer to Ω. Thus,
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as time progresses, less and less particles are still absorbing energy. As t → ∞, only

particles with frequency exactly equal to Ω will be absorbing energy, and there are only

very few particles doing this. So particles with frequencies very close to Ω will have

their amplitudes keep on increasing. In practice, when these growing amplitudes hit the

vacuum chamber, the process will stop. This sets the time limit for Landau damping to

stop. The damping process starts when the amplitude of the first particle is damped and

this time is t ≈ 2π/∆ω.

Let us study the energy in the system. The energy is proportional to the square of

the amplitude. Therefore the energy of all the particles is

E =
NA2

ω2
x

∫ ∞
−∞

dω ρ(ω)
sin2(ω − Ω)t/2

(ω − Ω)2
, (14.28)

where N is the total number of beam particles in the system. We see that as time

progresses the amplitude square,

Amplitude(ω)2 =
sin2(ω −Ω)t/2

(ω − Ω)2
, (14.29)

becomes sharper and sharper while its width shrinks. This verifies that energy is being

transfered by the particles having frequencies far away from Ω to particles having fre-

quencies closer to Ω. Since the square of the amplitude always has an area of πt/2, we

have

lim
t→∞

Amplitude(ω)2 = lim
t→∞

sin2(ω − Ω)t/2

(ω − Ω)2
=
πt

2
δ(ω − Ω) . (14.30)

Thus, at t→∞, the steady-state energy of the system is

E =
π

2

NA2

ω2
x

ρ(Ω)t , (14.31)

which increases linearly with time, and all this energy goes into those few particles having

exactly the same frequency as Ω. However, we do see in the asymptotic solution of

Eq. (14.8) that 〈x(t)〉 does not go to infinity. This is not a contradiction, because even

when a few particles have very large and still growing amplitudes, the centroid will not

be affected.

In our study so far, the driving force has an amplitude A that is independent of the

system of particles. For a particle beam, the situation is slightly different. The driving

force comes from the wake fields of the beam particles interacting with the discontinuities
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of the vacuum chamber, and usually has an amplitude proportional to the center displace-

ment of the beam. When there is a kick to the beam that creates a center displacement

〈x(0)〉 or a center displacement velocity 〈ẋ(0)〉, a force is generated and drives the whole

system of particles. Now two things happen. First, the particles give up their excited

energy to those particles having frequencies extremely close up Ω, the frequency of the

driving force, and the center of displacement approaches the BTF R(u). Second, the

center of displacement of the beam starts to decay according to the SRF G(t). As 〈x(t)〉
decreases, the driving force decreases also. Finally, the disturbance goes away. This is

how Landau damping takes place in a bunch. In fact, this process starts whenever the dis-

turbance is of infinitesimal magnitude. This implies that any disturbance will be damped

as soon as it occurs. We say that there will be enough Landau damping to keep the beam

stable. Notice that no frictional force has ever been introduced in the discussion. Thus,

there is still conservation of energy in the presence of Landau damping, which merely

redistributes energy from one wave to another.

14.4 TRANSVERSE BUNCH INSTABILITIES

Here, the frequency of the particle is the betatron frequency ωβ that has included the

incoherent tune shift. The equation of motion is

d2y

ds2
+

(
ωβ
βc

)2

y =
〈F (ȳ)〉
γmβ2c2

, (14.32)

coming from Eq. (2.4) in Chapter 2 where the dependence of the average force on y has

been absorbed into ωβ . The force is related to the transverse wake function,

〈F (ȳ)〉 = −e
2N

C

∞∑
k=1

ȳ(s− kC)W1(kC) (14.33)

where the summation is over previous turns. The negative sign shows that the force is

opposing the displacement. The absence of the linear particle density indicates that we

are dealing with a point bunch. Here ȳ is the same as 〈y〉, denoting the center-of-mass

displacement. Essentially the bunch considered here contains N particles all having the

same longitudinal position, but they have different transverse displacements and betatron

frequencies. Let us denote a collective instability of the dipole moment of the bunch eȳ(s)

at the collective frequency Ω by the ansatz

ȳ(s) = De−iΩs/(βc) , (14.34)
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where Ω → Ω + iε is assumed. Expressing in terms of the transverse impedance Z⊥1 ,

Eq. (14.32) becomes

d2y

ds2
+

(
ωβ
βc

)2

y =
ie2ND

γmcC2

∞∑
p=−∞

Z⊥1 (Ω + pω0)e−Ωs/(βc) , (14.35)

and

ȳ(s) =
ie2NDβ2cZ
2ωβxγmC2

e−iΩs/(βc)
∫ ∞
−∞

dω
ρ(ω)

ω − Ω− iε

=
ie2NDβ2cZ

2ωβx∆ωγmC2
e−iΩs/(βc)R(u) , (14.36)

where the relation has been made to the BTF R(u), ωβx is the center frequency of the

distribution ρ(ω) with a spread ∆ω, and we have introduced a short-hand form for the

impedance

Z =
∞∑

p=−∞
Z⊥1 (Ω + pω0) . (14.37)

Now the ansatz of Eq. (14.34) is employed for 〈y(t)〉, giving the dispersion relation

ie2Nβ2cZ
2ωβ∆ωγmC2

=
1

R(u)
, (14.38)

where the subscript x in ωβ has been dropped for convenience. If we come back to

Eq. (14.35) and assume all particles have the same betatron frequency, we obtain the

coherent tune shift

(∆ωβ)coh = − ie
2Nβ2cZ

2ωβγmC2
(14.39)

which is just the left side of Eq. (14.38). Notice that when ReZ⊥1 (ω) < 0, the coherent

tune shift has a positive imaginary part and the bunch will be unstable, which is the

situation without Landau damping. Now, Eq. (14.38) can be written as

−
(∆ωβ)coh

∆ω
=

1

R(u)
. (14.40)

The locus of real u in the complex 1/R(u) plane is the threshold curve, and is plotted in

Fig. 14.4 for various distributions. Remember that instability is generated by Ω→ Ω + iε

with ε real and positive. This translates to u→ u− iε. For the Lorentz distribution, the

unstable region is therefore at

1

R(u − iε) = u− i(1 + ε) , (14.41)
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Figure 14.4: Threshold curves in the 1/R(u) plane, where in every case the stability
region is to the top of the curve and the instability region to the bottom. (1) Lorentz
distribution, (2) rectangular distribution (a circle touching the V -axis), (3) parabolic
distribution, (4) elliptical distribution (part of the dashed circle centered at origin),
(5) bi-Lorentz distribution, (6) Gaussian distribution.

while the stable region is above ImR(u)−1 = −1. Since the various distributions have

been introduced with all different definitions of frequency spread ∆ω, Fig. 14.4 is not a

good plot for the comparison of various distributions. Instead, we would like to reference

everything with respect to the HWHM frequency spread ∆ωHWHM. Thus, we define a new

variable x to replace u:

u = xS with S =
∆ωHWHM

∆ω
. (14.42)

The dispersion relation of Eq. (14.40) is rewritten as

−(∆ωβ)coh

∆ωHWHM

=
1

R̂(x)
. (14.43)
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Figure 14.5: Threshold curves in the U -V plane plotted with reference to the
HWHM frequency spread. In every case the stability region is to the left of the
curve and the instability region to the right. (1) Lorentz distribution, (2) rectangular
distribution (a circle touching the V -axis), (3) parabolic distribution, (4) elliptical
distribution (part of the dashed circle centered at origin), (5) bi-Lorentz distribution,
(6) Gaussian distribution. The Keil-Schnell type stability circle is depicted in dashes
by (7).

where

R̂(x) = f̂(x) + iĝ(x) = [f(u) + ig(u)]S . (14.44)

It is customary to call the left side of Eq. (14.43) i(U + iV ), following the counterpart in

longitudinal microwave threshold, or

U + iV =
i

R̂(x)
=

if̂(x) + ĝ(x)

f̂2(x) + ĝ2(x)
. (14.45)

so that U ∝ −ReZ⊥1 and U ∝ −ImZ⊥1 . The threshold curves for various frequency

distributions are plotted in Fig. 14.5. Thus, whatever values of (U, V ) lie to the left of

the locus will be stable and whatever is on the right will be unstable. Without Landau



14-16 CHAPTER 14. LANDAU DAMPING

damping, any U > 0, which implies betatron frequency shift with a positive imaginary

part, will be unstable. Now, with Landau damping, the threshold has shifted to, for

example, U = 1 for the Lorentz distribution. There is one point on the stability curve

that is simple to obtain. It is the point at x = 0. There f̂ (x) = 0, so that V = 0 and

U = 1/ĝ(0). This point is important because it gives a rough idea of the threshold of

instability. Similar to the Keil-Schnell stability circle for longitudinal microwave stability,

we try to enclose the stability region in the U-V plane by a circle of radius 1√
3
, which is

shown in Fig. 14.5 as a dashed circle. This threshold circle coincides with the semi-circle

of the elliptical distribution. Thus, the stability limit can be written as

∣∣(∆ωβ)coh

∣∣ <∼ 1√
3

(∆ωβ)HWHMF , (14.46)

F is a form factor depending on the distribution and is equal to unity for the elliptical

distribution. These are tabulated in Table 14.2 for various distributions (Exercise 14.3).

Figure 14.5 shows how far a frequency distribution has its instability threshold deviated

from the Keil-Schnell type circle of Eq. (14.46). We see that the deviation increases as the

distribution goes from elliptical, parabolic, rectangular, Gaussian, bi-Lorentz, to Lorentz.

Thus, a betatron tune spread can provide Landau damping for instabilities driven by

the discontinuities of the vacuum chamber, provided that the driving impedance is not

too large. The transverse mode-mixing of mode-coupling instabilities that we studied in

Chapter 12 have not had Landau damping included. However, mode-coupling instability

involves the coherent shifting of a betatron spectral line by as much as the synchrotron

frequency. In order for Landau damping to work, a betatron tune spread of the order of the

synchrotron frequency will be necessary. This will be quite simple for proton machines

where the synchrotron tune is of the order νs ∼ 0.001. This explains why transverse

mode-mixing instabilities are usually not seen in proton machines. On the other hand,

the synchrotron tunes for electron machines are usually νs ∼ 0.01. A betatron tune

spread of this size will be too large. For this reason, transverse mode-mixing instabilities

in electron machines are usually alleviated by reactive dampers.

14.5 LONGITUDINAL BUNCH INSTABILITIES

In a bunch, Landau damping proceeds through the spread in synchrotron frequency.

Again let us consider a point bunch whose longitudinal displacement at position s is
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Table 14.2: U -intercept and form factor F defined in Eq. (14.46) for various distri-
butions.

Distribution g(0)−1 S=
(∆ωβ)HWHM

∆ω

U-intercept

ĝ(0)−1 =g(0)−1S−1

Form factor

F =
√

3ĝ(0)−1

Lorentz 1 1 1
√

3

rectangular
2

π
1

2

π

2
√

3

π

parabolic
4

3π

1√
2

4
√

2

3π

4

π

√
2

3

elliptical
1

2

√
3

2

1√
3

1

bi-Lorentz
1

2

√√
2− 1

1

2
√√

2− 1

1

2

√
3√

2− 1

Gaussian

√
2

π

√
2 ln 2

1√
π ln 2

√
3

π ln 2

described by z(s). The equation of motion is

d2z

ds2
+

(
ωs
βc

)2

z =
e2Nη

βEC

∞∑
k=1

W ′
0

(
kC + 〈z(s − kC)〉 − 〈z(s)〉

)
≈ e2Nη

βEC

(
〈z(s − kC)〉 − 〈z(s)〉

) ∞∑
k=−∞

W ′′
0 (kC) , (14.47)

where E is the particle energy, and the term corresponding to potential-well distortion

has not been included in the last line. This can be written as

d2z

ds2
+

(
ωs
βc

)2

z = − ie
2NηBω0Z‖
βEC2

, (14.48)

where we have used the ansatz

〈z(s)〉 = Be−iΩs/(βc) , (14.49)
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and the short-hand notation

Z‖ =
∞∑

p=−∞

[(
p +

Ω

ω0

)
Z‖0 (pω0 + Ω) − pZ‖0 (pω0)

]
. (14.50)

Now solve for z(s) and integrate with the distribution of synchrotron frequency ρ(ωs).

Then, self-consistency leads to the dispersion relation

−
ie2Nω0v2ηZ‖
2ωsβEC2∆ω

=
1

R(u)
. (14.51)

Without any spread in the synchrotron frequency, we obtain the coherent synchrotron

frequency shift

(∆ωs)coh = Ω− ωs =
ie2Nω0v2ηZ‖

2ωsβEC2
. (14.52)

If the narrow resonance impedance has its resonant frequency ωr detuned to below the rf

frequency,

ReZ‖ ≈
ωr
ω0

[
ReZ‖0 (Ω + pω0)−ReZ‖0 (Ω− pω0)

]
< 0 , (14.53)

where Ω ≈ ωs. Above transition (η > 0), this leads to stability in agreement with

Robinson stability criterion. Thus, from Eq. (14.51), we can again write

−(∆ωs)coh

∆ω
=

1

R(u)
. (14.54)

Therefore, we can define

U + iV = −i(∆ωs)coh

∆ω
=

i

R(u)
=

g(u) + if(u)

f2(u) + g2(u)
. (14.55)

The stability threshold curve in the U-V plane will therefore be exactly the same as in

the transverse bunch instability analyzed in the previous section. The Keil-Schnell like

stability circle is

(∆ωs)coh
<∼

1√
3

(∆ωs)HWHMF , (14.56)

where (∆ωs)HWHM is the half-width-at-half-maximum of the synchrotron frequency spread,

and the form factors F for various distribution are exactly the same as given in Table 14.2.

The above example is a demonstration of Landau damping in the presence of Robin-

son stability or instability. Therefore, even if the rf resonant peak is shifted in the wrong
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way so that we have Robinson instability, there is still Landau damping due to the spread

in synchrotron frequency.

14.6 TRANSVERSE UNBUNCHED BEAM

Consider a particle in the unbunched beam. Its transverse displacement y(s, t) satis-

fies the equation
d2y

dt2
+ ω2

βy =
〈F (s, t)〉
γm

, (14.57)

where the particle is at location s along the ring at time t. For an unbunched beam, the

revolution harmonic should be a good eigen-number. Consider the perturbing part of the

beam distribution, which contributes a dipole moment D per unit length, where

D(s, t) =
eN

C
〈y(s, t)〉 =

eN∆

C
exp

(
in
s

R
− iΩt

)
. (14.58)

The average transverse force is

〈F (s, t)〉 = − e
C

∫ ∞
−∞

vdt′W1(vt− vt′)D(s, t′)

=
ievβD(s, t)Z⊥1 (Ω)

C
. (14.59)

Here, s and t are related by s = S + ct where S is the position of the particle at time

t = 0. Then the equation of motion becomes

ÿ + ω2
βy =

ie2Nβ2cZ⊥1 (Ω)∆

γmC2
exp

[
in
S

R
− i(Ω− nω0)t

]
, (14.60)

which can now be integrated to give

y(s, t) =
ie2Nβ2cZ⊥1 (Ω)∆

γmC2

eins/R−iΩt

ω2
β − (Ω− nω0)2

. (14.61)

Integrating with the betatron frequency distribution ρ(ω) gives the self-consistent disper-

sion relation

1 =
ie2Nβ2cZ⊥1 (Ω)

γmC2

∫
dω

ρ(ω)

ω2 − (Ω− nω0)2
≈ −(∆ωβ)coh

∫
dω

ρ(ω)

ω − (Ω− nω0)
, (14.62)
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where

(∆ωβ)coh = Ω− nω0 − ωβ = − ie
2Nβ2cZ⊥1 (Ω)

2ωβγmC2
(14.63)

is the coherent betatron frequency shift. Thus, again we have

−(∆ωβ)coh

∆ω
=

1

R(u)
. (14.64)

exactly the same as Eq. (14.40). The only difference is the dependence of the coherent

betatron tune shift on impedance is different. Thus, we have also the Keil-Schnell like

stability threshold

(∆ωβ)coh
<∼

1√
3

(∆ωβ)HWHMF . (14.65)

14.7 LONGITUDINAL UNBUNCHED BEAM

This instability is different from what we have discussed before, because we have

no synchrotron frequency here. Landau damping is supplied by the spread in revolution

frequency of the beam particles. This is the longitudinal microwave instability. The

dispersion relation, Eq. (5.12), has been derived in Chapter 5 and the stability curves are

shown in Fig. 5.4. Formerly, the dispersion relation was derived using Vlasov equation.

Here, we will show another derivation without resorting to Vlasov equation.

The phase space distribution is

ψ(s, t, ω0) =
[
λ0 + ∆λ(s, t)

]
ρ(ω0) , (14.66)

where ρ(ω0) is the distribution in revolution frequency, and the unperturbed linear density

is just

λ0 =
N

C
. (14.67)

The average longitudinal force depends only on the linear distribution and is given by

〈F (s, t)〉 = −e
2

C

∫
vdt′W ′

0(vt− vt′)∆λ(s, t′)

= −e
2vZ‖0(Ω)

C
∆λ(s, t) , (14.68)

where the ansatz

∆λ(s, t) = ∆̂λeins/R−iΩt (14.69)



14.7. LONGITUDINAL UNBUNCHED BEAM 14-21

has been used.

A particle will drift by z(s, t) longitudinally according to

ż = −ηvδ , (14.70)

while the rate of change of the fractional momentum spread δ is

δ̇ = −e
2c2

CE
Z
‖
0(Ω)∆λ(s, t) (14.71)

This particle is at location S at time t = 0, or s = S + vt. Thus

δ̇ = −e
2c2

CE
Z
‖
0 (Ω)∆̂λeinS/R−i(Ω−nω0)t . (14.72)

Integration gives

δ(t) =
e2c2

CE
Z
‖
0 (Ω)∆̂λ

einS/R−i(Ω−nω0)t

i(Ω− nω0)
, (14.73)

z(t) = −e
2ηc2v

CE
Z
‖
0 (Ω)

∆λ

(Ω− nω0)2
. (14.74)

The particles that are originally at λ0ds now move to a new volume. Therefore

λ0ds =
[
λ0 + ∆λ(s, t)

] {[
s+ ∆s+ zs+∆s−vt(t)

]
−
[
s+ zs−vt(t)

]}
. (14.75)

This leads to the perturbed phase-space distribution

∆λ(s, t)ρ(ω0) = −λ0
∂z

∂s

∣∣∣∣
s−vt

ρ(ω0)

=
ine2Nηc3βZ

‖
0(Ω)

RC2E

∆λρ(ω0)

(Ω− nω0)2
. (14.76)

Integrating both sides, consistency leads to the dispersion relation

1 =
ine2Nηc3βZ‖0(Ω)

RC2E

∫
dω0

ρ(ω0)

(Ω− nω0 + iε)2
. (14.77)

Define the growth rate without damping ωL which is very similar to the synchrotron

frequency:

ω2
L

=
ieI0Z

‖
0(Ω)nηω2

0

2πβ2E
. (14.78)
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The dispersion relation can be rewritten as

1 =

[
ω2
L

n2(∆ω)2

] [
n(∆ω)2

∫
dω0

ρ′(ω0)

nω0 − Ω− iε

]
=

[
ω2
L

n2(∆ω)2

]
R‖(u) , (14.79)

where an integration by part has been performed. The function R‖ on the right is defined

as

R‖(u) = f‖(u) + ig‖(u) = n(∆ω)2 ℘

∫
dω0

ρ′(ω0)

nω0 − Ω
+ i(∆ω)2πρ′

(
Ω

n

)
, (14.80)

and

u =
ω0x − ω0

∆ω
, (14.81)

with ∆ω a measure of the spread of the revolution frequency distribution ρ(ω0) and ω0x

the center revolution frequency. Usually one writes

V − iU =
ω2
L

n2(∆ω)2
=
f‖(u)− ig‖(u)

f2
‖ (u) + g2

‖(u)
. (14.82)

This will give the threshold and growth curves for longitudinal microwave instability in

Chapter 5.

14.8 MORE ON BTF

Consider a coasting beam. In addition to the transverse wake, if we give an extra

sinusoidal kick with harmonic n and frequency Ω, the equation of motion is

ÿ + ω2
βy = −2(∆ωβ)cohωβ〈y〉+Aeins/R−iΩt , (14.83)

where the coherent betatron tune shift (∆ωβ)coh is given by Eq. (14.39). For the particular

solution, try the ansatz

〈y(s, t)〉 = Beins/R−iΩt . (14.84)

As before, s = S + vt, and we obtain

y(s, t) =

[
−2(∆ωβ)cohωβB +A

]
eins/R−iΩt

ω2
β − (nω0 −Ω)2

. (14.85)

Consistency requires

B ≈ −2(∆ωβ)cohωβB +A

2ωβ

∫
dω

ρ(ω)

ω − (Ω− nω0)
=
−2(∆ωβ)cohωβB +A

2ωβ∆ω
R(u) , (14.86)
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and after rearranging,
A

2ωβ∆ωB
=

1

R(u)
+

(∆ωβ)coh

∆ω
. (14.87)

In a measurement, the beam is kicked at a certain harmonic but with various fre-

quencies ω and the response is measured in its amplitude and phase. If the beam is of

very weak intensity, the coherent tune shift term can be neglected and one can therefore

obtain the BTF R(u). Next, the beam intensity is increased to such a large value that

the beam is still stable. The measurement of the beam response will give a stability curve

shifted by (∆ωβ)coh/∆ω. From the shift one can therefore infer the impedance Z⊥1 of the

vacuum chamber as illustrated in the top plot of Fig. 14.6

For the longitudinal BTF, we add a longitudinal kicking voltage per unit length,

A with revolution harmonic n and frequency Ω. Then the longitudinal force seen by a

particle changes from Eq. (14.68) to

〈F (s, t)〉 = −e
2

C

∫
vdt′W ′

0(vt− vt′)∆λ(s, t)ρ(ω0) +Aeins/R−iΩt . (14.88)

Assume the ansatz

∆λ(s, t) = Beins/R−iΩt . (14.89)

Then the solution of the momentum spread and longitudinal drift become

δ(t) =

−e2c2

CE
Z
‖
0 (Ω)B +A

−i(Ω− nω0)
einS/R−i(Ω−nω0t . (14.90)

z(t) = ηv

−e2c2

CE
Z‖0 (Ω)B +A

(Ω− nω0)2
eins/R−iΩt . (14.91)

Doing the same as Eqs. (14.76) and (14.77), we obtain

B =

[
ω2
L

n2(∆ω)2
B +

i2πηvN

n2(∆ω)2C2
A

]
R‖(u) . (14.92)

Or,
i2πηvN

n2(∆ω)2C2

A

B
=

1

R‖(u)
− ω2

L

n2(∆ω)2
. (14.93)

Exactly in the same way as the transverse counterpart, for a very low intensity beam, the

response of the kick gives the threshold curve. For an intense beam, this threshold curve
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Figure 14.6: Top: Transverse beam response function of a coasting beam. Dash
curve is for a very low intensity beam, thus showing the threshold curve. But it is
shifted to the solid curve at high intensity. The transverse impedance can be inferred
from the shift indicated by the arrow. Bottom: Longitudinal beam response function
of a coasting beam. The dashed curve is for low intensity and is shifted to the solid
curve at high intensity. The arrow is proportional to the longitudinal impedance.
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will be shifted. The amount and direction of shift will be proportional to the magnitude

and phase of the longitudinal impedance. This is shown in the lower plot of Fig. 14.6.

14.9 EXERCISES

14.1. A shock excitation is given to bunch with a Lorentz frequency distribution ρ(ω) so

that at t = 0 each particle has ẋ(t) = ẋ0. Compute the response of the displacement

of the center of a bunch 〈x(t)〉 and show that it does not decay to zero. Show that

this is because ρ(0) 6= 0.

14.2. Derive the shock response function G(t) and beam transfer function R(u) for the

various frequency distributions as listed in Table 14.1. Fill in those items that have

been left blank.

14.3. Derive the U-intercept and the form factor F defined in Eq. (14.46) for various

distributions as listed in Table 14.2.
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